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On the linear instability of elliptic pipe flow 

By R. R. KERSWELLT AND A. D A V E Y  
Department of Mathematics and Statistics, University of Newcastle upon Tyne, NE1 7RU, UK 

(Received 14 June 1995 and in revised form 16 February 1996) 

The linear stability of elliptic pipe flow is considered for finite aspect ratios thereby 
bridging the gap between the small-aspect-ratio analysis of Davey & Salwen (1994) 
and the large-aspect-ratio asymptotics of Hocking (1977). The flow is found to 
become linearly unstable above an aspect ratio of about 10.4 to the spanwise- 
modulated analogue of the Orr-Sommerfeld mode to which plane Poiseuille flow first 
loses stability. This disturbance is found to possess a series of intense vortices along 
its critical layer at lateral stations far removed from the central minor axis. The 
critical Reynolds number appears to fall from infinity as the aspect ratio increases 
above 10.4, ultimately approaching Hocking’s (1977) asymptotic result at much larger 
aspect ratios. 

1. Introduction 
There is only a very small number of simple exact solutions to the Navier-Stokes 

equations and as a result the linear stability of these flows has been exhaustively 
studied - with one exception: the laminar flow in an elliptic pipe. Here, rather than 
the linear problem reducing to a one-dimensional eigenvalue problem, the asymmetry 
of the basic state means that a two-dimensional eigenvalue problem in the cross-space 
coordinates must be solved. A number of authors have made progress by considering 
an appropriately chosen limit of this full problem: large Reynolds number (Smith 
1979), small ellipticity (Davey & Salwen 1994) and large aspect ratio (Hocking 
1977). However, certainly at finite ellipticities and near the critical Reynolds number, 
extracting information from this eigenvalue problem appears viable only through 
numerical methods. These are used here to extend the initial work of Davey & 
Salwen (1994) to pipes of finite ellipticities and then ultimately to the large-aspect- 
ratio results of Hocking (1977). 

Apart from the classical nature of the problem itself, elliptical pipe flow is of 
considerable interest by virtue of the gap it bridges between Hagen-Poiseuille flow 
(HPF) in a circular pipe and plane Poiseuille flow (PPF) in a channel. If the 
ellipticity of the pipe is small, so that the cross-section is almost a circle, then the 
flow approximates HPF which is generally believed to be stable to infinitesimal 
disturbances. Alternatively, when the ellipticity is large, so that the major axis of the 
ellipse is much longer that the minor axis, the flow approximates PPF and a critical 
Reynolds number almost certainly exists. The question then arises as to how and 
when (as a function of the ellipse’s aspect ratio A )  does a critical Reynolds number 
appear. Two distinct possibilities exist: the critical Reynolds number either tends to 
infinity or to a finite value as A -P Acrit from above. For the latter case, the neutral 

t Present address: Department of Mathematics, University of Bristol, BS8 lTW, UK. 
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curve in the wave number-Reynolds number plane must close and subsequently 
shrink to a point as A decreases to A,,,,. For A slightly above A,,,, in this scenario, 
linear instability would then only appear within a finite band of Reynolds numbers 
centred on the critical value. This band may remain finite for all finite A larger than 
A, , , ,  or become semi-infinite at another critical aspect ratio A,. Underlying all this, 
however, is the issue of whether A,,,, > 1, which would add yet further to the large 
body of evidence indicating that HPF is linearly stable for all Reynolds numbers. 

At large aspect ratios, we are essentially studying how spanwise boundary curvature 
stabilizes PPF. Other studies to consider how PPF may be stabilized include adding a 
finite amount of streamwise shear motion to the boundary plates thereby setting up 
a mixture of PPF and plane Couette flow (PCF) (Potter 1966; Hains 1967; Reynolds 
& Potter 1967). Linear stability for all Reynolds numbers is then obtained if the 
speed of the plates exceeds 53% of the mean flow-through velocity (Reynolds & 
Potter 1967). Tatsumi & Yoshimura (1990) have studied the also stabilizing effect of 
imposing sidewalls on PPF by examining rectangular duct flow. Starting at the large- 
aspect-ratio PPF limit and working towards the square-duct limit, they estimated that 
the critical Reynolds number becomes infinite when the duct aspect ratio is about 3.2. 
The elliptic pipe flow problem tackled here is the exact complement to this work: we 
start at linearly stable HPF and then move smoothly away towards PPF by increasing 
the ellipticity in search of linear instability. 

The analytical work of Hocking (1977,1978) hints at the relative importance of 
spanwise boundary curvature and the presence of sidewalls on the critical Reynolds 
number. For a rectangular duct of large aspect ratio, A + l ,  he found using a regular 
perturbative approach that the PPF critical Reynolds number is only weakly increased 
by an amount 6844/A2. In contrast, for an elliptical pipe in which the boundary 
curvature is felt throughout, the effect is much stronger at 86 300/A. If anything, this 
would tend to suggest that elliptical pipe flow is stable beyond the aspect ratio of 3.2 
at which rectangular duct flow first loses linear stability. 

The plan of the paper is as follows. Section 2 formulates the eigenvalue problem 
to be solved in terms of a set of non-orthogonal elliptico-polar coordinates. These 
effectively restore the basic flow and crucially the boundary to that of circular 
pipe flow but at the minor expense of complicating the momentum equation to be 
solved. Section 3 discusses the numerical method used to solve the eigenvalue problem 
accompanied by an Appendix which details the symmetry arguments used to optimize 
the coding. The results are presented in 54 followed by a discussion in 95. 

2. Formulation 
We consider the linear stability of the basic Poiseuille flow 

through an elliptical pipe defined by 

y' - 1 X' +-- 
1 + p  1 - p  

such that its aspect ratio is 
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A natural transformation to make is to orthogonal elliptic cylindrical coordinates 
(i, 11, z )  where 

cosh i sinhi . 
sinh c0 cosq, y = - x = -  

sinh lo 'ln " 
with 

O < q < 2 7 1 ,  o < [ < i o = ; l o g  

However, this coordinate system is problematic for two reasons both of which 
essentially stem from the fact that, apart from at the boundary, it does not reflect the 
structure of the basic flow. Curves of constant 5 are confocal ellipses rather than the 
similar constant-speed ellipses of the basic flow and collapse as i: + 0 to a singular 
line segment joining the foci on the major axis. This inevitably leads to a degradation 
in any numerical scheme based on this coordinate representation. Secondly and more 
seriously, any discretization matrices based on spectral expansions of the physical 
variables will be dense matrices due to the awkward form of the transformation. This 
severely limits the range of parameter space which can be explored computationally 
to the extent that linear instability of elliptical pipe flow cannot be reached. 

A far more suitable system proves to be the non-orthogonal elliptico-polar coordi- 
nates (s, 4, z )  defined by 

x = s(1 + p)1/2 cos 4, y = s(1- p)'/2 sin 4 (2.5) 

in which both the boundary (s = 1) and the basic flow field ( U  = (1 - s2)2) depend 
on only the one coordinate s. The price paid for this simplification however is 
the increased complexity of the linearized momentum equation caused by the non- 
orthogonality of the transformation (2.5). Despite this, the equations are still separable 
in time and the axial variable z and these dependencies are removed from the 
velocity and pressure perturbations in the conventional way by introducing an axial 
wavenumber -a and (complex) frequency --ac as follows: 

[ 4 s ,  4, z ,  t), m 7  4, z ,  t) 1 = [ u(s, 4)s" + U(S7 $14 + w(s, 41% P(S, 4)  leia(z-ct) (2.6) 

where 

S" = sin 4 j ,  
4 = -(I + P ) ' / ~  sin 4 f + (1 - P) ' /~  cos +$. 

Projecting out three independent components of the linearized momentum equation 
(see Kerswell 1994 for the details) gives exactly 

(1 + p)'l2 cos 4 f + (1 - 

l - p c 0 ~ 2 4 d p  psin241 dp -+--- [-iac+ia(l - s2)] u + 

psin24dp 1 + 8 c o s 2 4 1  dp 
[-iac+ia(l - s2)] u + ~- + 

1 - p2 as 

l + p c o s 2 4  2 8 2Psin241 d 28sin24 1 -_ -  + -_ 
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1-2 
R 

[-iac + ia(1 - s2)] w - 2su + iclp = -V w, 

where 

-2 i - p c 0 ~ 2 4  a2 1 + 8 ~ 0 ~ 2 4 1  a 1 + p c 0 ~ 2 4  1 a2 v =  -+  -- + 
1 - p 2  as2 1 - 8 2  s as 1 - p 2  ~ ~ a 4 ~  

___ 

2 ~ s i n 2 4  1 a2 28sin24 1 a 
c12 -__- --- 

+ 1-82 s asa4 1-82 s2a4 
and R is a Reynolds number based upon the central flow speed of the basic state and 
a length scale in which the semi-major axis of the pipe measures (1 + p)'/2. As the 
cross-sectional area of the pipe is (1 - P2)'I2 in these units, a more sensible choice for 
an elliptical pipe Reynolds number is 

Repipe = (1 - p2)1/4R (2.10) 

which when constant ensures that the flow rate down the pipe is independent of the 
ellipticity 8. Working to O(p),  Davey & Salwen (1994) used R as their Reynolds 
number which at this order is then identical to Repipe. For comparison with PPF, 
alternative definitions of the Reynolds number and the axial wavenumber based on 
the semi-minor axis as the length scale are as follows: 

cl 
(2.11) 

(1 - p)'/2 * 
Reppf = (1 - /3)'/2 R = Repipe, a p p f  = 

The form of the incompressibility condition is preserved under the transformation 
(2.5): 

(2.12) 

The equations (2.7)-(2.9) and (2.12) together with the non-slip boundary conditions 

u = v = w = O  at s = l  (2.13) 

constitute an eigenvalue problem for the complex frequency -clc. The eigenvalue 
corresponding to the least-damped or most unstable disturbance at a given axial 
wavenumber cl has the largest value of Im(ac). Crucially, the coefficients in this 
eigensystem depend only on 4 through either the functions cos24 or sin24. As a 
result, spectrally expanding the flow variables using Fourier modes in 4 is very efficient 
as it ultimately leads to block-tridiagonal discretization matrices. It is essentially this 
feature alone which allows high enough Reynolds numbers and aspect ratios to be 
reached for linear instability to be seen. 

3. Numerics 
3.1. Method 

Three different numerical formulations were examined. Firstly, the axial velocity w 
and the pressure p were eliminated using (2.12) and (2.9) respectively leaving two 
equations in the two variables u and v. Secondly, the poloidal-toroidal decomposition 
u = V x (I@) + V x V x (xg) was used, again reducing the problem down to two 
equations in the two unknowns w and x. Lastly, the eigenvalue problem was solved 
as it stood, that is all four variables u,v, w and p were expanded directly. In each, 
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(u, v ,  w ,  P )  (4 V, W ,  P )  (u, 0) 
with symmetries with symmetries 

N LYCi N LYCi N EC, 

10 -3.868976161 20 -5.655564974 20 -4.141703421 
15 -4.126329179 24 -4.190690188 25 -4.127535011 
18 -4.128171613 28 -4.130039154 30 -4.127564486 
20 -4.127555452 32 -4.127636991 35 -4.127564474 
24 -4.127564418 36 -4.127565985 40 -4.127563718 
28 -4.127564469 38 -4.127564277 50 -4.127564260 
30 -4.127564469 40 -4.127564491 60 -4.12767 1038 
40 -4.127564469 45 -4.127564469 70 -4.127503785 
50 -4.127564469 50 -4.127564469 80 -4.127563842 
80 -4.127564469 80 -4.127564469 90 -4.127569740 
100 -4.127564469 100 -4.127564469 100 -4.12761 1556 

(x 10-2) (x  10-2) (x  10-2) 

TABLE 1. Convergence of the least-damped eigenvalue for the circular pipe case (j = 0) given by 
the (u,v,w,p) code with and without radial symmetries built-in and the (u ,v)  code at Repip, = 3000 
and r = 1. The radial truncation parameter is N for all expansions and M = 1. Hence for the (u ,v)  
code, the matrices are 2N x 2N, whereas for the (u ,v ,w,p)  code, the matrices are 4N x 4N. The 
associated real part of the frequency is c, = 0.91146567 and all computations were performed in 
double-precision arithmetic. 

the relevant flow variables were approximated using double sums of Fourier modes 
in 4 and Chebyshev polynomials in s, before the governing equations were imposed 
through collocation over s and Galerkin projection in 4. 

Although the last approach appears the least memory efficient of the three, it 
proved by far the most practical owing to the simplicity of coding, the absence of 
spurious eigenvalues and its stable convergence properties. Even though the first 
two cases would converge earlier (in terms of storage requirements) to the correct 
eigenvalue, this value would then wander disconcertingly under increased truncation 
and rogue eigenvalues would always be present - see table 1 which details this 
behaviour for the (u , v )  code at Repip, = 3000, a = 1 and f i  = 0. Presumably, the 
two high-order equations solved in the bivariable cases are slightly ill-conditioned 
by the coordinate singularity at the axis of the pipe.? Although in itself small, this 
effect prevented precise comparison with known analytic results at small ellipticity f i  
(Davey & Salwen 1994) and hence crucial checks on the code were unavailable. In 
contrast, the third approach invariably yielded a ‘clean’ set of eigenvalues (half of 
which would be infinite corresponding to compressible disturbances) and delivered 
robust convergence as evidenced in table 1. Excellent agreement was achieved with the 
small-ellipticity results of Davey & Salwen (1994) for f i  < 0.1. The only disadvantage 
of the third approach is its larger storage requirement compared with the other cases. 
However, this is not as severe as it first appears because the representation of each 
physical variable through its own expansion is more efficient than indirectly expanding 
a subset. By way of illustration, table 1 shows that N = 20 (80 coefficients) for the 
(u,  v, w,p)  with-symmetries (see below) code is sufficient to achieve 5 significant figures 
in the decay rate as opposed to N = 30 (60 coefficients) for the (u,v) with-symmetries 
code. 

t This behaviour persisted despite reformulating the equations in terms o f f  = su and g = sv 
and explicitly imposing regularity conditions at the axis. 
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The eigenfunctions possess definite parities in both 4 and s owing to (i) the reflec- 
tional symmetry of the system in the major and minor axes and (ii) the representation 
degeneracy afforded by cylindrical coordinates. The former feature means that the 
eigenfunctions can be partitioned into solutions with just even or just odd Fourier 
modes and then these modes further subdivided into those symmetric or antisym- 
metric about the minor axis. The latter feature implies that the radial structure of 
these ‘even’ or ‘odd’ eigenfunctions also possess definite symmetries or parities in s - 
the Appendix discusses this important idea for both cylindrical and spherical polar 
coordinates systems. The upshot of all this is that we may search separately for four 
different types of mode: 

Here we have adopted the modal I-IV nomenclature of Tatsumi & Yoshimura 
(1990), where, for instance, w(a,s) means that the axial velocity w is antisymmetric 
and symmetric with respect to the major and minor axes respectively. Here Tn(s) = 

cos(n c0s-l s) is the nth Chebyshev polynomial and 

On@) = Tn(s) - Tn-2(s) (3.5) 

so that the boundary conditions are built into the spectral functions. 
Computationally, rather than viewing the interior of the pipe as the region { 0 d 

s < 1, -rc < 4 < rc }, we consider the equivalent domain { -1 < s < 1 , 0  < 4 < rc }. 
The solution in -1 < s < 0 can be constructed from that in 0 < s < 1 through 
the known symmetries and so we need only collocate the equations over the positive 
zeros of T2N(~)  and impose boundary conditions at s = 1. This approach is in 
contrast to the normal technique of expanding in modified Chebyshev polynomials 
Tn(2s - l), n = 0,1,2,. . . , N ,  collocating over, say, the Gauss-Lobatto points s j  = 
;(cos[Jrc/(N - l)] + l),  j = 1,2,. . . , N - 1 (Schmid & Henningson 1994; O’Sullivan & 
Breuer 1994) and explicitly imposing the regularity conditions 

(m l)(iu f v) = imw = imp = 0 (3.6) 

at the axis (Batchelor & Gill 1962; Davey 1978). By building the appropriate radial 
parities into the expansions, the correct axial behaviour automatically follows without 
need to explicitly impose the regularity conditions (3.6), and storage requirements 
can be quartered (see table 1). Most important, however, is that the collocation 
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(u, 0, w, P) 
with symmetries 

aRe N 

104 25 
30 
35 
40 
50 

105 30 
35 
40 
45 
50 
55 
60 
70 
80 

lo6 50 
60 
70 
80 
90 
100 
110 
120 

@XI 

-22.70608805 
-22.70490056 
-22.7049 1459 
-22.70491455 
-22.70491455 

( x  10-3) 

-6.928706156 
-7.19547 1472 
-7.210044934 
-7.202 1420 15 
-7.202214757 
-7.2023 1761 8 
-7.202307690 
-7.202308049 
-7.202308049 

-2.036937516 
-2.274192895 
-2.282792323 
-2.279561805 
-2.279629961 
-2.279649954 
-2.27964789 1 
-2.279647999 

N 

30 
40 
45 
50 
60 

45 
50 
55 
60 
70 
80 
90 
100 
120 

60 
70 
80 
90 
100 
110 
120 
140 

t1c1 
( ~ 0 - 3 )  

-21.97711837 
-22.70501396 
-22.70493910 
-22.7049 1463 
-22.70491455 

-6.968942673' 
-7.310500588* 
-7.223205443 
-7.204790614 
-7.202331463 
-7.202308193 
-7.202308050 
-7.202308058 
-7.202308029 

-1.659436401' 
-2.135542968' 
-2.2890358 15' 
-2.279634661' 
-2.279630812. 
-2.279648057' 
-2.279648 122 
-2.279647993 

TABLE 2. Convergence of the least-damped (centre) eigenvalue for the circular pipe case ( p  = 0 
and therefore M = 1) using the (u,v,w,p) codes with and without the radial symmetries built-in 
at a = 1 and Rep!p, = lo4 (c,  = 0.95148), lo5 (c, = 0.98465) and lo6 (c, = 0.995145). The * 
indicates that spurious realistic eigenvalues were also generated. All computations were performed 
in double-precision arithmetic. 

points are at their sparsest near the axis, 0(1/2N) spacing, rather than at their 
densest, O(l/N2) spacing. Desensitizing the code to the coordinate axis in this 
way is absolutely crucial when the need arises to approximate increasingly two- 
dimensional flow fields in ellipses of large aspect ratio within the confines of a 
polar coordinate system. Moving the collocation points from the centre to the wall 
is clearly advantageous for representing the 'wall' modes, to one of which PPF is 
unstable, but not the centre modes which are the most important pipe disturbance at 
large aRepipe. However, their localization is comparatively weak, being concentrated 
within a radius O((aRe,ip,)-1/4) of the axis (Davey & Nguyen 1971), and the code 
with radial parities built-in still proves more efficient even up to aRepipe = lo6 - see 
table 2. 

As mentioned previously, the governing equations only couple the Fourier mode m 
with nearest neighbours m f 2 ensuring that the discretization matrices are banded. 
This was exploited by both an inverse-iterative and a time-stepping approach (both 
requiring storage O ( M N 2 ) )  to achieve much higher truncations than possible with a 
full eigenvalue code where the storage is a prohibitive O ( M 2 N 2 ) .  
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log10 (a) 
FIGURE 1. A plot of the minimum damping rate clci verses log,,(a), where tl is the axial wavenumber, 
for Hagen-Poiseuille flow (HPF) and plane Poiseuille flow (PPF) at Repipe = Reppf = 6000. 

4. Results 
It is now well established that plane Poiseuille flow first loses linear stability at a 

Reynolds number of 5772.22 to a two-dimensional wall mode (Orszag 1971). For a 
large enough aspect ratio, we can be confident that elliptic pipe flow will similarly be 
unstable to the three-dimensionally modulated analogue of this wall mode at some 
modified (larger) Reynolds number. What is not so clear is whether other modes, 
special to the elliptical geometry, become unstable first, i.e. that elliptic pipe flow 
might harbour some interesting intermediary behaviour of its own (in other words, 
does the decay rate-axial wavenumber curve for elliptic pipe flow break through the 
axis unexpectedly at it evolves from the HPF limit to the PPF limit - see figure 1). 
This seems unlikely but is not impossible. In fact, just such unexpected behaviour 
has been found by Cowley & Smith (1985) in plane Poiseuille-Couette flow, where 
two and sometimes three neutral curves can exist. 

The natural place to look for such behaviour is at long axial wavelengths ( a  = 
O(Re;;,)) which are the least-damped eigenmodes in HPF (see figure 1 and Gill 1973) 
and accordingly appear the most easily destabilized (e.g. Mackrodt 1976). Smith 
(1979) also suggests that such long-wavelength modes will be important in elliptic 
pipe flow until a match with PPF is achieved at aspect ratios of O(Reii:). In addition, 
the perturbation analysis of Davey & Salwen (1994) for nearly circular elliptic pipes 
emphasizes the role of these long-wavelength disturbances, tentatively predicting that 
one should become unstable at only A w 1.3. 

Numerically, the asymptotic parameter range appf  = O(Re&) is reasonably acces- 
sible and the general trend with aspect ratio clear by A = 6. Figure 2 shows how the 
decay rate of the least-damped mode, which is of type IV (see (3.4)) in this regime, 
varies with log,,(appf) at RepPf = 6000. The overall maximum modal growth rate in 
HPF ( A  = 1) at this Reynolds number is located at about a = appf = lop2. Rather 
than this maximum being maintained and gradually rising to pierce the axis, increas- 
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0 

-0.001 

-0.002 

aPPf ci 

-0.003 

-0.002 

A = 6  

-0.001 
-3.5 -3.0 -2.5 -2.0 -1.5 

log10 ( a p p f )  

FIGURE 2. The minimum decay rate appfci plotted at long wavelengths for varying aspect ratios A 
and Reppf = 6000. The well-known maximum at CI = clppf = lo-* for HPF is quickly lost as A is 
increased ensuring that instability cannot occur in this regime. As clppf + 0, all the damping rates 
tend to a value which scales with 

ing the aspect ratio quickly converts the decay rate curve into a steadily decreasing 
profile and the local peak is lost. The least-stable mode is then attained as a + 0 in 
this long-wavelength regime. The corresponding minimum decay rate always remains 
positive with increasing Reynolds number - in fact scaling with Re;;f - so that the 
whole curve remains below the axis. As a result, it seems clear that although the 
long-wavelength modes may be the least-damped modes for elliptic pipes of low 
aspect ratio, they do not actually become unstable. 

Further computations of the least-damped eigenvalue over the four types of mode 
I-IV in the parameter ranges lop4 < CI < lo2, aRepip, 4 lo6 and A < 5, reveal 
decay rate-loglo(clppf) curves which remain qualitatively similar to that of HPF rather 
than PPF (see figure 1). Beyond this parameter range, we could no longer afford 
the luxury of calculating all the eigenvalues for a particular modal type at given 
a, Repip, and A,  and then using inverse iteration to ‘polish up’ the least-damped 
value. More extreme parameter ranges were reached by time-stepping the equations 
to just isolate the least-damped mode before again using inverse iteration to improve 
accuracy. Unfortunately, run times at large Reynolds numbers (e.g. Repipe > lo4) soon 
became prohibitive due to the increasing stiffness of the system: a small incremental 
time step is forced by the fast modal frequencies but a long overall integration time 
required to differentiate between two slowly decaying neighbouring modes. However, 
by this stage, it had already become reasonably clear that no new instability would 
arise other than the PPF-type at sufficiently large aspect ratio. The search for linear 
instability was then accordingly tailored to this scenario. 

Plane Poiseuille flow is linearly unstable to only one two-dimensional Orr- 
Sommerfeld mode for which the streamwise (axial) velocity component is antisym- 
metric about the midplane (major axis) (Orszag 1971). Along with this mode, there 
are, of course, other three-dimensional modes with similar symmetry which can be- 
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10.79 
10.98 
11.11 
11.26 
11.45 
11.67 
12 
12.5 
13 
14 
15 
16 

80000 0.712 0.140 
70000 0.726 0.144 
65000 0.733 0.147 
60000 0.742 0.150 
55000 0.752 0.153 
50000 0.763 0.157 
44000 0.775 0.162 
37900 0.795 0.168 
33200 0.81 0.174 
26900 0.83 0.183 
23000 0.85 0.190 
20300 0.865 0.196 

17 18300 0.88 0.201 
18.5 16100 0.895 0.207 
20 14600 0.91 0.213 
21 13800 0.915 0.215 
23 12600 0.925 0.220 
25 11670 0.935 0.224 
30 10190 0.95 0.231 
35 9300 0.96 0.236 
40 8700 0.97 0.240 
45 8280 0.975 0.243 
50 7960 0.98 0.245 
a3 5772 1.02 0.264 

TABLE 3. Numerical data for the neutral curve of elliptic pipe flow. The aspect ratio is A, Reppf is 
the critical Reynolds number and aPpf the critical axial wavenumber both based on the semi-minor 
length scale. c, is the modal frequency. 

come linearly unstable but always at higher Reynolds numbers (Squire’s theorem). 
Assuming that a similar situation pertains in a large-aspect-ratio elliptic pipe (i.e. an 
analogue of Squire’s theorem holds at large but finite aspect ratio), we can confine 
attention to modes of type I. The spanwise-modulated two-dimensional PPF mode 
envisaged by Hocking (1977) is of this type. Modes of form I1 will be unstable 
later owing to their inherent three-dimensionality and modes symmetric about the 
midplane, I11 and IV, should always be stable. This picture is confirmed by Tatsumi 
& Yoshimura (1990) for Poiseuille flow through a rectangular duct where the basic 
flow differs more substantially from PPF than elliptic pipe flow with changing aspect 
ratio. 

The least-damped mode of type I at Reppf = 6000 and A = 10 was found by time- 
stepping to be the spanwise-modulated analogue of the unstable two-dimensional 
PPF mode. This was clear through the close coincidence of their frequencies: only the 
decay rate changes appreciably as A decreases from infinity. Inverse iteration was then 
used to track this mode to more extreme values of the Reynolds number and aspect 
ratio until instability was found : see table 3. Fortunately, the spanwise-modulated 
PPF mode which determines the linear stability boundary is comparatively easy to 
resolve numerically. However, even in this case, the required truncation levels ( N ,  M )  
did vary considerably along the neutral curve to the point where they had to be 
continually monitored. Tables 4 and 5 show typical truncation results for two extreme 
cases of large Reynolds number and large aspect ratio just above the neutral curve. 
Figure 3 shows the neutral stability curve in the (Re,,f,A)-plane and figure 4 the 
critical axial wavenumber appf and frequency c, as a function of the aspect ratio. The 
critical Reynolds number Reppf appears to ‘fall’ from infinity at just over A = 10 and 
then gradually and monotonically approaches Hocking’s asymptotic result 

86 300 
Re,f = 5772 + - 

A 

as A increases. (In fact, the data tend to indicate a slightly different asymptotic 
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Cr 90 95 100 105 110 ci(xlo-4) N=80 

M=18 0.150064 0.150065 0.150065 0.150065 0.150065 0.150065 
1.15695 1.18683 1.18240 1.18339 1.18347 1.18338 

20 0.150064 0.150065 0.150065 0.150065 0.150065 0.150065 
1.14396 1.17023 1.16589 1.16673 1.16687 1.16676 

22 0.150063 0.150065 0.150065 0.150065 0.150065 0.150065 
1.14705 1.17385 1.16924 1.17010 1.17028 1.17015 

25 0.150063 0.150065 0.150065 0.150065 0.150065 0.150065 
1.14681 1.17352 1.16879 1.16969 1.16988 1.16974 

28 0,150063 0.150065 0.150065 0.150065 0.150065 
1.14657 1.17337 1.16858 1.16950 1.16970 

30 0.150063 0.150065 0.150065 0.150065 
1.14657 1.17337 1.16857 1.16950 

TABLE 4. Estimates of the most unstable eigenvalue (cr upper entry and ci( x lop4) lower entry) using 
various truncation levels ( N ,  M )  for slightly supercritical elliptic pipe flow of aspect ratio A = 11.4, 
appf = 0.742 and Re,,f = 60000. 

M=45 0.244041 0.244040 0.244042 0.244042 0.244039 
1.33950 1.32385 1.32354 1.131696 1.33544 

50 0.244039 0.244040 0.244040 0.244040 0.244040 
1.36191 1.32988 1.33002 1.33004 1.33025 

55 0.244039 0.244040 0.244040 0.244040 0.244040 
1.31586 1.32944 1.32984 1.32986 1.32986 

60 0.244040 0.244040 0.244040 0.244040 
1.37508 1.33031 1.32986 1.32986 

70 0.244038 0.244040 0.244040 
1.36214 1.32919 1.32986 

80 0.244038 0.244040 
1.32869 1.32932 

TABLE 5. As table 4 but for A = 50, appf = 0.9775 and Reppf = 8100. 
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10 20 30 40 50 

A 

FIGURE 3. The neutral stability curve (solid line) for elliptic pipe flow in the (RerlPf,A)-plane. 
Hocking’s asymptotic result Reppf = 5772 + 86300/A (short dash) and the PPF limiting value of 
5772 (long dash) are also shown for comparison. 

1 .a 

0.9 

a P P f  

0.8 

0.7 

A 
FIGURE 4. The variation of the critical axial wavenumber ugpf and frequency c, with the aspect 
ratio along the neutral curve. Limiting values should be uppf = 1.02 and c, = 0.264 as A + co. 

expression of the form 
86 300 

Re,,f = 5772 + __ 
A - A 0  (4.1) 

with A. fi: 10.6, which is essentially just the next higher-order form of Hocking’s 
result.) That the approach should be slow is apparent from the spanwise modulation 
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FIGURE 5. Contour plots of the axial velocity component (upper plot is Re(w) and lower Im(w)) just 
above criticality (Re,,, = 60000, a,,, = 0.742, c, = 0.150065) for a pipe of aspect ratio A = 11.4. 
The plot has been scaled down laterally by a factor of 11.4/4 and only the first quadrant is shown 
(there is symmetry with respect to the minor vertical axis and antisymmetry about the major 
horizontal axis). The truncation used is N = 90 and M = 25. The phase of the eigenfunctions 
has been chosen so that Im(w(x = 0 , y  = 0.5)) = 0 and then normalized (max Re(w) = 1, max 
Im(w) = 0.999). The contour interval in both plots is 0.05. Note the presence of intense vortices 
along the critical layer far removed from the central region. 

envisaged by Hocking in which the amplitude essentially varies laterally as 

e-(0.05-0.90i)n2/~ 

The dominant feature is then a spanwise oscillation of wavelength 2.6A1/* riding 
upon a slow exponential decay of characteristic scale (20A)1/2. Formally, Hocking’s 
asymptotic analysis would seem to require and as a result A = 50 is clearly 
still not large enough. 

Contour plots of the eigenfunctions verify the salient feature of Hocking’s asymp- 
totic solution - a spanwise oscillation near the minor axis of about the right wave- 
length - but also indicate unexpectedly large flows away from the central region. 
Figures 5,  6 and 7 clearly show the presence of intense vortices in the axial (stream- 
wise) velocity component along the critical layer at lateral stations far removed from 
the central minor axis. These vortices appear to signal the end of the eigenfunction 
laterally caused by the increasingly stabilizing conditions as the end is approached 
and presumably arise through the focusing of energy along the critical layer. Tat- 
sumi & Yoshimura (1990) observe a similar feature in their eigenfunctions (see their 
figure 5b). 

In some sense, these eigenfunctions resemble WKBJ solutions (see Drazin 1974) 
where the turning point is, relatively speaking, a ‘locally neutral’ region indicated by 
the end of the vortices. Inwards towards the ‘unstable’ central region, the eigenfunc- 
tions grow and oscillate, whereas outwards towards the ‘locally stable’ end regions, 
they decay exponentially. The intensity of these vortices relative to the central core 
is, however, quite an unexpected singular feature. Judging by the ultimate success 
of Hocking’s asymptotic result, or indeed its higher-order version (4.1), the effect of 
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FIGURE 6. Contour plots of the axial velocity component (upper plot is Re(w) and lower Im(w)) 
just above criticality (Re,,f = 14600, t lppf  = 0.91, c, = 0.212888) for a pipe of aspect ratio A = 20. 
The plot has been scaled down laterally by a factor of 5 and only the first quadrant is shown (there 
is symmetry with respect to the minor vertical axis and antisymmetry about the major horizontal 
axis). The truncation used is N = 60 and M = 50. The phase of the eigenfunctions has been chosen 
so that Im(w(x = 0 , y  = 0.5)) = 0 and then normalized (max Re(w) = 1, max Im(w) = 0.966). The 
contour interval in both plots is 0.05. 

FIGURE 7. Contour plots of the axial velocity component (upper plot is Re(w) and lower Im(w)) just 
supercritical (Reppf = 8 100, appf = 0.9775, c,  = 0.244040) for a pipe of aspect ratio A = 50. The plot 
has been scaled down laterally by a factor of 12.5( !) and only the first quadrant is shown (There 
is symmetry with respect to the minor vertical axis and antisymmetry about the major horizontal 
axis.). The truncation used is N = 55 and M = 60. The phase of the eigenfunctions has been chosen 
so that Im(w(x = 0 , y  = 0.5)) = 0 and then normalized (max Re(w) = 0.987, max Im(w) = 1). The 
contour interval in both plots is 0.05. The eigenfunctions are clearly vanishingly small beyond the 
vortices in this extreme geometry. 
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these vortices on the damping rate must be at a higher order than that produced by 
the boundary curvature in the central region. 

5 .  Discussion 
In this paper, we have considered the linear stability of elliptic pipe flow at finite 

and large aspect ratios. A comprehensive survey at moderate aspect ratios ( A  d 5) 
indicated no special intermediary instability, emphasizing instead the robust stability 
of pipe flow. By numerical necessity, the search was then specialized to track the 
spanwise-modulated analogue of the unstable PPF Orr-Sommerfeld mode. Formally, 
the neutral curve so obtained only guarantees instability rather than making any 
statement about stability. Without a full survey establishing the stability of all 
eigenvalues ‘below’ this curve, we cannot be sure to have captured the actual neutral 
curve. It perhaps goes without saying that such a survey is well beyond reach 
numerically given that we have only just managed to resolve the simplest mode using 
an efficient inverse iterative approach. However, given the initial survey at moderate 
aspect ratios, we are fairly confident that the neutral curve shown in figure 3 is the 
real neutral curve. This conclusion is further supported by the stability picture of 
rectangular duct flow painted by Tatsumi & Yoshimura (1990). Here, even though 
the basic flow differs more substantially from PPF than elliptic pipe flow owing to the 
corners, the neutral curve is still found to be determined by the spanwise-modulated 
PPF mode. 

The neutral curve depicted in figure 3 suggests a critical aspect ratio Acrit for linear 
instability of just over 10 (an exponential Shanks extrapolation gives a figure of 
= 10.4). Intuitively, this seems reasonable as then the spanwise length scale is an 
order of magnitude larger than the streamwise length scale and one would imagine 
that the flow would be more PPF than HPF in character. However, as Hocking’s 
work suggested, the critical Reynolds number is surprisingly sensitive to the aspect 
ratio, still being about 8000 at A = 50. Despite the presence of unexpectedly intense 
vortical structures along the critical layer at the spanwise ends of the eigenfunctions, 
Hocking’s asymptote appears to be ultimately approached. This vindicates his working 
assumption that only the boundary curvature at the centre is important to leading 
order for the linear damping rates in elliptic pipe flow. 

Unfortunately, figure 3 leaves one issue unresolved: does the critical Reynolds 
number tend to infinity or a finite value as A + Acrit from above? Certainly, if 
anything, the former scenario is suggested by figure 3. However, the latter can 
be argued for as follows. The growth rate of the one unstable Orr-Sommerfeld 
mode of PPF increases from 0 at Reppf = 5772, quickly reaches a maximum at just 
below Reppf = 50000 and then gradually decreases to 0 as Reppf -+ co. Intuitively, 
one could imagine that introducing stabilizing sidewalls, or more to the point convex 
spanwise boundary curvature, would lower this curve, producing also an upper critical 
Reynolds number just for this mode (the situation for other three-dimensional modes 
is uncertain). In other words, decreasing A from infinity would close the neutral 
stability curve in the (a,Re)-plane for the spanwise modulated PPF mode. As A 
approaches Acrit (being close enough so that there are no unstable three-dimensional 
PPF modes), then the full neutral curve for elliptic pipe flow would be a shrinking 
closed region in the (a,Re)-plane enclosing a finite critical Reynolds number. However, 
the steepness of the neutral curve and the potential magnitude of any finite limiting 
Reynolds number indicated by figure 3 suggest that this issue is only of academic 
interest. 
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We are grateful to Professor A. M. Soward for a helpful discussion concerning the 
interpretation of figures 5 ,  6 and 7. 

Appendix. Symmetries in polar coordinates 
The symmetry results presented here are to greater or lesser extent already known 

and in use (e.g. Patera & Orszag 1981). However, that their origin should be so 
simple and generic appears to have escaped notice. (A notable exception to this is 
an appendix by Hollerbach & Ierley (1991) in which radial parities are discussed for 
axisymmetric variables in spherical polars.) As a result, it seemed desirable to collect 
together here these results for both cylindrical and spherical polar coordinates. 

Cylindrical polar coordinates 
Cylindrical polar coordinates are degenerate in the sense that both labels (s, 4, z) and 
(-s, 4 f n, z )  refer to the same point in physical space. Hence all physical quantities, 
whether a scalar p or a vector u, must be invariant under the transformation 

2F :(s, f$)+(-s,4*n).  (A 1)  

If the azimuthal dependence is simply e'"6 as is typically the case in spectral expan- 
sions, this translates into the symmetry conditions in s: 

P(-S, z )  = (-l)"p(s, z ) ,  
u(-s, 4 f n)  = (-l)"u(s, 4). 

Once the images of the base vectors under the 9 are taken into account, 

$(-s, 4 f = -%, 4), 

us(-s, z )  = -(-l)"Us(S, z ) ,  

U&S,Z)  = -(-l)"U&,Z), 
u,(-s, z )  = +(-l)"u,(s, z ) .  

&-s, 4 k .) = -&, $1, 
we obtain parity conditions on the individual velocity components 

It is worth re-emphasizing that these symmetries are inherent to the coordinate 
representation rather than indicative of any feature of the equations being solved. It 
should also be stressed that these ideas are only useful if the axis s = 0 is included in 
the domain of interest, otherwise they are trivially observed. This is best illustrated 
by the simple solution Q, = (As + B s - ~ )  cos 4 to Laplace's equation which should be 
more accurately written as @ = (As + Bs-'Isl-') cos 4. Obviously, the presence of Is1 
would only lead to discontinuities in the physical variables and hence be disallowed 
if the axis is part of the domain. 

Spherical polar coordinates 

The arguments presented above may be repeated for spherical polar coordinates, 
where the labels (r,O,$), (--r,O f n,+), ( - r , f n  - 0 ,4  k n)  and (r,-e,4 f n) are 
all equivalent. These degeneracies are encapsulated by the invariance of physical 
quantities under the two transformations: 

Fl : ( r ,  8 , 4 )  -, ( r ,  -64  f n )  

q-e, 4 f TC) = +w, 41, E(-e, 4 k n )  = -&e, $1, &e, $ 2  TC) = -3(e,+), 

(A 6) 

where 
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and 

where 

As before, if we assume that the azimuthal dependence is merely eim6, invariance 
under FI means that 

p ( r ,  -4 = +(-1)"p(r, 61, 
ur(r, -6) = +(-l)mur(r, 6), 
u ~ ( r ,  -6) = -(-l)%o(r, %), 

u#(r, -6) = -(-l)%+(r, 6), 

whereas invariance under F2 leads to 

As an example of how these relations can be exploited, we consider a specific but 
common situation in which the velocity field u in a spherically symmetric system is 
decomposed into toroidal and poloidal components : 

IC = V x ( e t )  + V x V x (f;). (A 10) 

It is fairly standard to expand e and f using spherical harmonics as follows: 

e = C el(r)P;"(cos %)eimo, f = C f , ( r )~r (cos  O)eime, 
I n 

(where P,"' is the associated Legendre polynomial of degree 1 and order m) which 
means that 

1 
1 dP;"(cos 6)ei,g im dfn(r) Pr(cos 6) . 

r 
u+ = - C -el(r) d% +FTT sin6 elm+. 

I 

These automatically satisfy the conditions (A 8) because 

P;" -+ (-l)mPy under 6 -+ -6. (A 12) 

The even or oddness of 1 - m and n - m determines the particular symmetries of the 
velocity field about the equator 8 = n / 2 :  for instance if u6 is symmetric about the 
equator, 1 - m must be odd and n - m even as 

P;" -+ (-l)'-"P;" under 6 -+ n - 6. (A 13) 
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The conditions (A 9) then dictate the radial symmetries through 
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P;" + (-1)'PY under 19 + 6 & TC, 

as follows: 

el(+) = -(-1)'ei(r), fn ( -r )  = -(-)"fn(r). 
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